

§ 13.4 Theory of Curves (1)

- We set out to describe the acceleration vector $\vec{a} = \frac{d}{dt} \vec{v}(t)$. We have:

$$\vec{a} = \frac{d}{dt} (||\vec{v}|| \vec{T}) = \left(\frac{d}{dt} ||\vec{v}|| \right) \vec{T} + ||\vec{v}|| \left(\frac{d\vec{T}}{dt} \right)$$

$\frac{d^2s}{dt^2}$ $\frac{ds}{dt} \perp \vec{v}$

Recall: $||\vec{T}(t)|| = 1 \Rightarrow 1 = \vec{T}(t) \cdot \vec{T}(t) = ||\vec{T}(t)||^2$

$\Rightarrow 0 = \vec{T} \cdot \vec{T} + \vec{T} \cdot \vec{T}' = 2\vec{T}' \cdot \vec{T}$

Theorem: If $\frac{d\vec{T}}{dt} \neq 0$, then $\frac{d\vec{T}}{dt} \perp \vec{T}$ so

$$\frac{d\vec{T}}{dt} = \left\| \frac{d\vec{T}}{dt} \right\| \vec{N}$$

where

$$\vec{N} = \vec{N}(t) = \frac{\vec{T}'(t)}{\| \vec{T}'(t) \|} = \frac{\frac{d\vec{T}}{dt}}{\| \frac{d\vec{T}}{dt} \|}$$

is the Principal Normal Vector

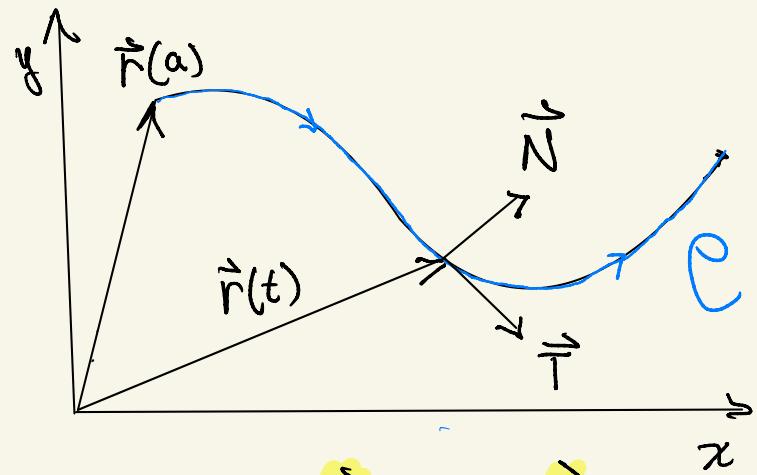
- In \mathbb{R}^2 : $(\vec{r}(t) = (x(t), y(t)))$

(2)

the Principal Normal \vec{N}

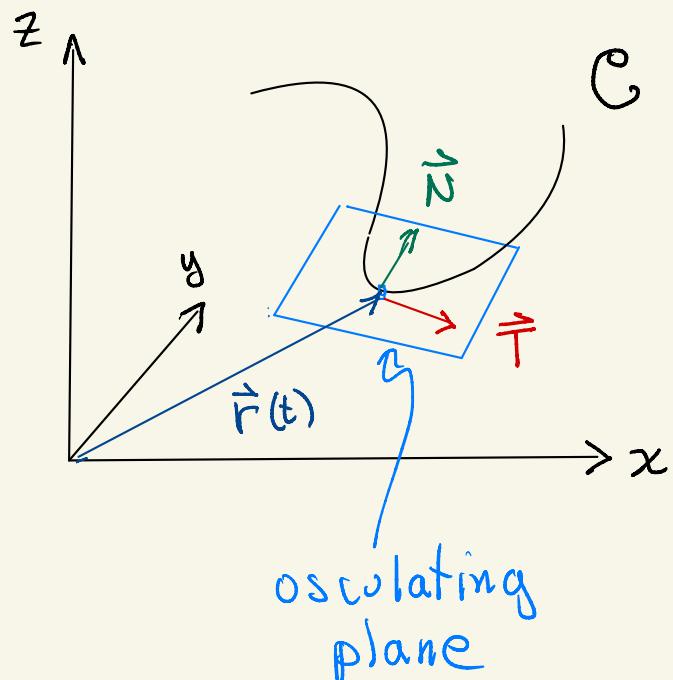
points orthogonal to \vec{T} in the direction

C is curving.



- In \mathbb{R}^3 , the plane spanned by \vec{T} and \vec{N} is the osculating plane, the plane in which the curve most closely lies @ $\vec{r}(t)$

Picture: The Principal Unit Normal \vec{N} gives the direction and plane into which C is "curving away from \vec{T} "



$$\vec{N} = \frac{\left(\frac{d\vec{T}}{dt} \right)}{\left\| \frac{d\vec{T}}{dt} \right\|}$$

• Putting it all together:

3

$$\vec{a} = \frac{d}{dt} (\|\vec{v}\| \vec{T}) = \underbrace{\frac{d}{dt} \|\vec{v}\|}_{\frac{d}{dt} \frac{ds}{dt}} \vec{T} + \|\vec{v}\| \frac{d\vec{T}}{dt}$$

So $\frac{ds}{dt} \parallel \frac{d\vec{T}}{dt} \parallel \vec{N}$

$$\vec{a} = \frac{d^2 s}{dt^2} \vec{T} + \frac{ds}{dt} \parallel \frac{d^2 \vec{T}}{dt^2} \parallel \vec{N}$$

the
scalar
acceleration

speed
 $\frac{ds}{dt} = v$

↑ a measure of the
"curvature" at
 $\vec{r} = \vec{r}(t)$

$$\kappa = \left\| \frac{d\vec{T}}{dt} \right\|$$

called the Curvature

$$\vec{a} = \vec{a}_T \vec{T} + \vec{a}_N \vec{N}$$

$$\vec{a}_T = \frac{d^2 s}{dt^2}$$

$$\vec{a}_N = v \left\| \frac{d\vec{T}}{dt} \right\|$$

scalar
acceleration

$$\text{Eg: } \vec{a} \cdot \vec{T} = (\vec{a}_T \vec{T} + \vec{a}_N \vec{N}) \cdot \vec{T}$$

$$= \vec{a}_T \vec{T} \cdot \vec{T} + \vec{a}_N \vec{N} \cdot \vec{T}$$

$$= \vec{a}_T$$

$$= \frac{d^2 s}{dt^2}$$

Summary: $\vec{a} = a_T \vec{T} + a_N \vec{N}$

component of
 \vec{a} in direction \vec{T}

component of
 \vec{a} in direction \vec{N}

where $a_T = \frac{dv}{dt}$, $a_N = v \left\| \frac{d\vec{T}}{dt} \right\|$ $v = \frac{ds}{dt}$

So we have proven:

Theorem: $\vec{a} \cdot \vec{T} = \frac{dv}{dt}$, $\vec{a} \cdot \vec{N} = v \left\| \frac{d\vec{T}}{dt} \right\|$

• It remains to understand $\left\| \frac{d\vec{T}}{dt} \right\|$

Theorem: $\left\| \frac{d\vec{T}}{dt} \right\| = kv$ $(v = \frac{ds}{dt})$

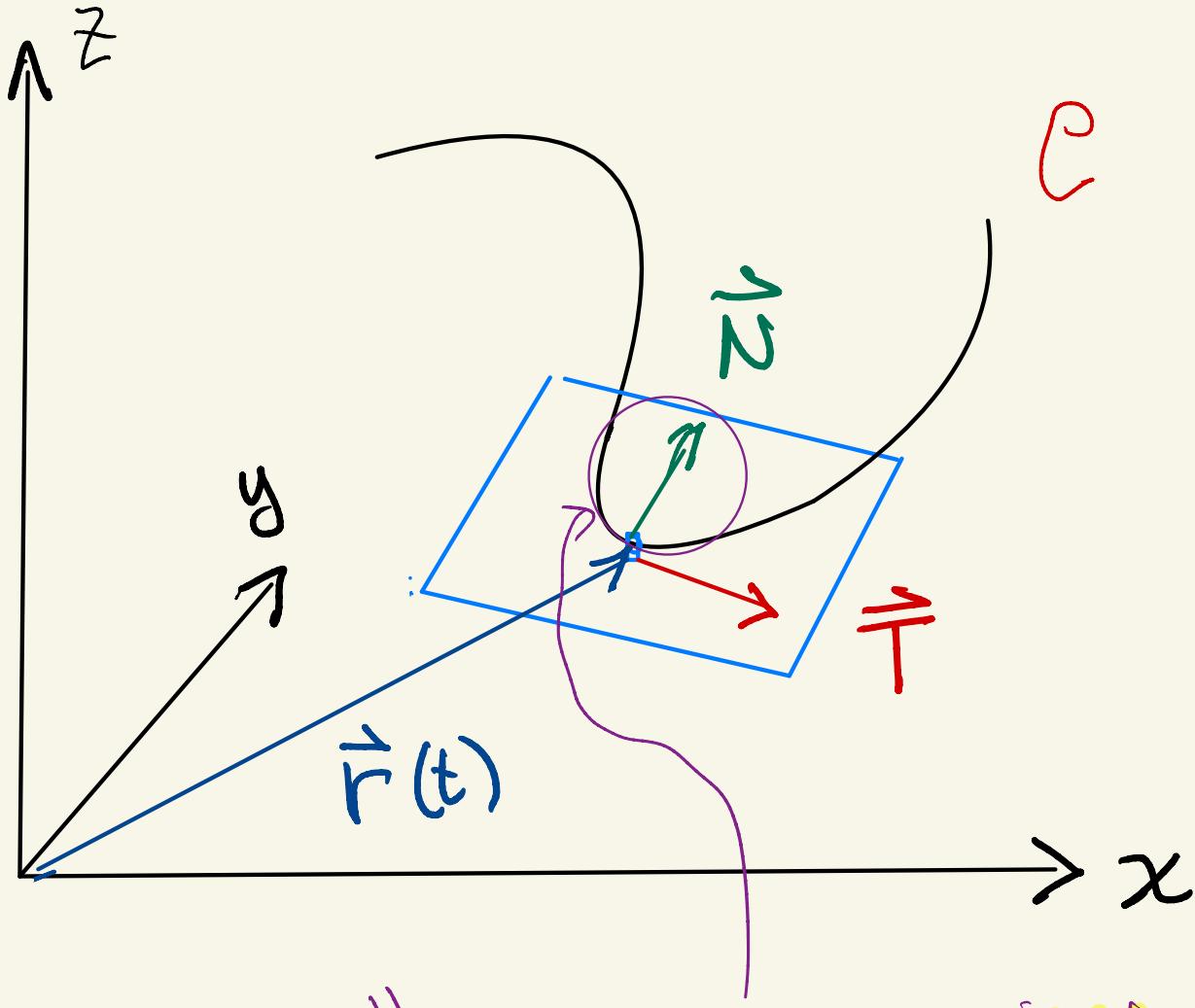
where

$$k = \frac{1}{r} = \frac{1}{\text{radius of curvature}}$$

r = "radius of the circle that best fits
the curve at point $\vec{r}(t)$ "

Defn: $K = k(t) = \text{Curvature}$ of C at $\vec{r}(t)$

Picture



" osculating circle "

lies in the osculating plane
 r = radius of curvature

$$K = \frac{1}{r}$$

Conclude = Geometrical Interpretation

of the acceleration vector :

$$\begin{aligned}\overset{\curvearrowleft}{\vec{a}} &= a_T \overset{\curvearrowleft}{\vec{T}} + a_N \overset{\curvearrowleft}{\vec{N}} \\ &= \frac{d^2 s}{dt^2} \overset{\curvearrowleft}{\vec{T}} + \kappa v^2 \overset{\curvearrowleft}{\vec{N}}\end{aligned}$$

$$v = \frac{ds}{dt}$$

$a_T = \frac{d^2 s}{dt^2}$ is the scalar acceleration

$$a_N = v^2 \kappa = \frac{v^2}{r}$$

r = radius of curvature

v = velocity

$$\overset{\curvearrowleft}{\vec{T}} = \frac{\overset{\curvearrowleft}{\vec{v}}}{\|\overset{\curvearrowleft}{\vec{v}}\|}$$

$$\overset{\curvearrowleft}{\vec{N}} = \frac{\frac{d\overset{\curvearrowleft}{\vec{T}}}{dt}}{\left\| \frac{d\overset{\curvearrowleft}{\vec{T}}}{dt} \right\|}$$

(or if $\frac{d\overset{\curvearrowleft}{\vec{T}}}{dt} = 0$ $\overset{\curvearrowleft}{\vec{N}} = 0$)

(assume $\overset{\curvearrowleft}{\vec{v}} \neq 0$)

This is the theory - we now do some examples -

Example ①: Show that $\kappa = \left\| \frac{d\vec{T}}{ds} \right\|$

Soln: If we are given $\vec{T}(t)$, then

$$\frac{d\vec{T}}{dt} = \left\| \frac{d\vec{T}}{dt} \right\| \vec{N} = v \kappa \vec{N}$$

length direction (unit)

$$\text{But } \frac{d\vec{T}}{ds} = \frac{d}{ds} \vec{T}(t(s)) = \frac{d\vec{T}}{dt} \cdot \frac{dt}{ds}$$

$\frac{1}{v}$

$$= v \kappa \vec{N} \frac{1}{v} = \kappa \vec{N}$$

Therefore $\left\| \frac{d\vec{T}}{ds} \right\| = \left\| \kappa \vec{N} \right\| = \kappa$ ✓

Example ②

8

Let $\vec{r}(t) = \vec{i} + \frac{1}{2}t^2 \vec{j}$

Find: \vec{v} , \vec{a} , $\frac{ds}{dt}$, \vec{T} , $\frac{d^2s}{dt^2}$, a_T , \vec{N} , a_N , K

Soln (a) $\vec{v} = \frac{d\vec{r}}{dt} = \vec{i} + t\vec{j} = \overbrace{(\vec{i}, t)}$

(b) $\vec{a} = \frac{d\vec{v}}{dt} = 0\vec{i} + \vec{j} = \vec{j} = \overbrace{(0, 1)}$

(c) $\frac{ds}{dt} = \vec{v} = \|\vec{v}\| = \sqrt{1+t^2}$

(d) $\vec{T} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{\vec{i} + t\vec{j}}{\sqrt{1+t^2}} = \overbrace{\frac{1}{\sqrt{1+t^2}}\vec{i}} + \overbrace{\frac{t}{\sqrt{1+t^2}}\vec{j}}$

(e) $\frac{d^2s}{dt^2} = \vec{a} \cdot \vec{T} = \overbrace{(0, 1)} \cdot \left(\overbrace{\frac{1}{\sqrt{1+t^2}}}, \overbrace{\frac{t}{\sqrt{1+t^2}}} \right) = \frac{t}{\sqrt{1+t^2}}$

(f) $a_T = \frac{s}{\vec{a} \cdot \vec{T}} = \frac{d^2s}{dt^2} = \frac{t}{\sqrt{1+t^2}}$

$$(g) \quad \vec{N} = \frac{1}{\left\| \frac{d\vec{T}}{dt} \right\|} \frac{d\vec{T}}{dt}, \quad \frac{d\vec{T}}{dt} = \frac{d}{dt} \left(\frac{1}{(1+t^2)^{1/2}}, \frac{t}{\sqrt{1+t^2}} \right)$$

$$\frac{d\vec{T}}{dt} = -\frac{1}{2} (1+t^2)^{-3/2} t \vec{i} + \frac{\sqrt{1+t^2} \cdot 1 - t \frac{1}{2} (1+t^2)^{-1/2} t \cdot \vec{j}}{1+t^2}$$

$$= \frac{-t}{(1+t^2)^{3/2}} \vec{i} + \frac{(1+t^2) - t^2}{(1+t^2)^{3/2}} \vec{j} = \frac{1}{(1+t^2)^{3/2}} (\vec{-t}, \vec{1})$$

$$\left\| \frac{d\vec{T}}{dt} \right\| = \frac{1}{(1+t^2)^{3/2}} \left\| (\vec{-t}, \vec{1}) \right\| = \frac{\sqrt{1+t^2}}{(1+t^2)^{3/2}} = \frac{1}{1+t^2}$$

Thus: $\vec{N} = (1+t^2) \frac{1}{\left\| \frac{d\vec{T}}{dt} \right\|} (\vec{t}, \vec{1}) = \frac{1}{\sqrt{1+t^2}} (\vec{t}, \vec{1})$

Check: $\left\| \vec{N} \right\| = \frac{1}{\sqrt{1+t^2}} \left\| (\vec{t}, \vec{1}) \right\| = 1 \quad \checkmark$

$$(h) \quad a_N = \vec{a} \cdot \vec{N} = \underbrace{(\vec{0}, \vec{1})}_{\text{vector}} \cdot \underbrace{\left(\frac{1}{\sqrt{1+t^2}}, \frac{t}{\sqrt{1+t^2}} \right)}_{\text{scalar}} (\vec{t}, \vec{1}) = \frac{1}{\sqrt{1+t^2}}$$

$$(i) \quad K \sqrt{v^2} = a_N \quad \text{so} \quad K = \frac{a_N}{\sqrt{v^2}} = \frac{1}{\sqrt{1+t^2}} \cdot \left(\sqrt{1+t^2} \right)^2 = \sqrt{1+t^2}$$

Example ③ Show that when

$a_N = 0$, $v \neq 0$, motion is along a straight line -

Soln: $\vec{a} = \frac{d^2 \vec{s}}{dt^2} \vec{T} + v^2 \vec{K} \vec{N}$

\vec{a}_N

thus if $a_N = 0$ either $v \neq 0$ or $K = 0$

But $K = \frac{dT}{ds} = 0 \Rightarrow T = \text{const}$

I.e. $\frac{dT}{ds} = \frac{d}{ds} (x(s) \hat{i} + y(s) \hat{j} + z(s) \hat{k}) = 0$

$x = \text{const}$ $y = \text{const}$ $z = \text{const} \Rightarrow T = \text{const}$

$\vec{r}(s) = \underbrace{\vec{T} \cdot s}_{\text{const}} + \underbrace{\vec{r}_0}_{\text{const}}$

straight line

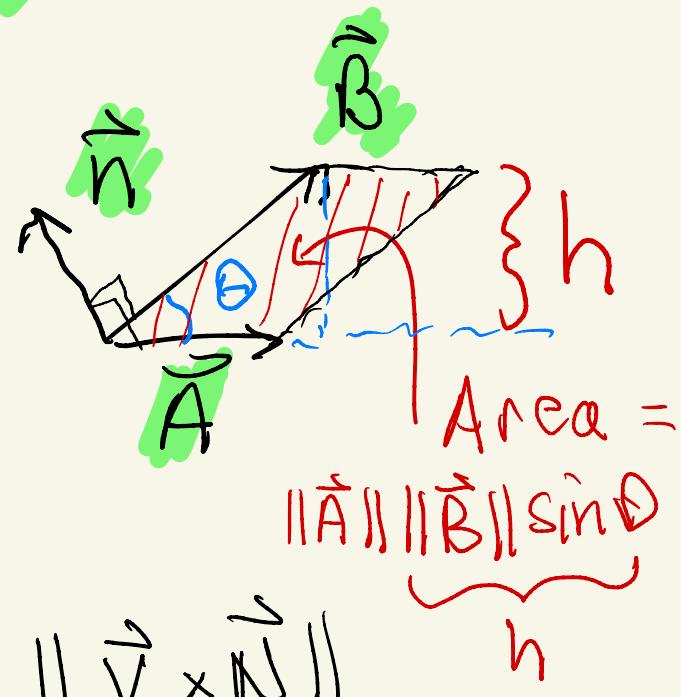
Example ④ Find a formula

for K in terms of \vec{v} and \vec{a}

Soln: $\vec{a} = a_T \vec{T} + a_N \vec{N}$

Recall cross product:

$$\vec{A} \times \vec{B} = \|\vec{A}\| \|\vec{B}\| \sin \theta \vec{N}$$



$$\begin{aligned} \|\vec{v} \times \vec{a}\| &= \|\vec{v} \times (a_T \vec{T} + a_N \vec{N})\| \\ &= \|a_T \vec{v} \times \vec{T} + a_N \vec{v} \times \vec{N}\| \end{aligned}$$

$$= a_N \|\vec{v} \times \vec{N}\| = K v^2 \|\vec{v} \times \vec{N}\|$$

$$= K v^3 \|\vec{T} \times \vec{N}\|$$

So

$$K = \frac{\|\vec{v} \times \vec{a}\|}{v^3}$$

Example 4 Find the equation for the oscillating plane at $\vec{r}(2)$ for the helix

$$\vec{r}(t) = 3\cos t \hat{i} + 3\sin t \hat{j} + t \hat{k}$$

Soln: $\vec{T}(t) = \frac{\vec{v}(t)}{\|\vec{v}(t)\|} = \frac{-3\sin t \hat{i} + 3\cos t \hat{j} + \hat{k}}{\|\vec{v}(t)\|}$

(Idea)

$$\|\vec{v}(t)\| = \sqrt{9\sin^2 t + 9\cos^2 t + 1} = \sqrt{10}$$

$$\vec{T}(t) = \frac{(-3\sin t, 3\cos t, 1)}{\sqrt{10}}$$

$$\frac{d\vec{T}}{dt} = \frac{1}{\sqrt{10}} (-3\cos t, -3\sin t, 0)$$

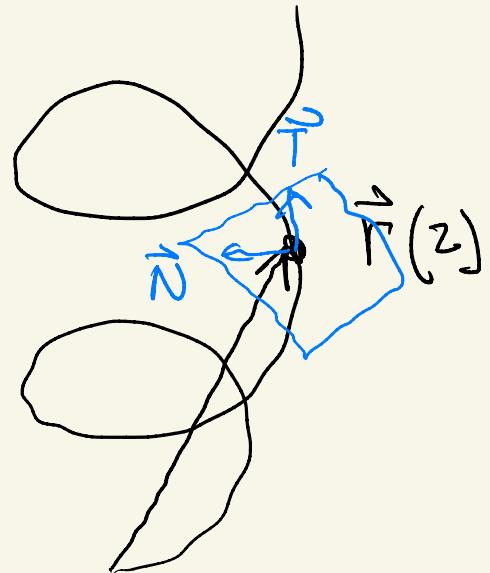
$$\vec{N} = (-\cos t, -\sin t, 0)$$

Osculating Plane is the $\vec{r}(z)$
plus the span of $\vec{T} \vec{N} \vec{B}$

Equation of plane

thru P_0

$$\vec{P_0P} \cdot \vec{n} = 0$$



$$\vec{n} = \vec{T} \times \vec{N}, \quad P_0 = \vec{r}(z), \quad P = (x, y, z)$$

$$\vec{T} \times \vec{N} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 3\cos t & -3\sin t \\ -\cos t & -\sin t & 1 \end{vmatrix}$$

$$= \vec{i}(-\sin t) - \vec{j}(-\cos t) + (+3\sin^2 t + 3\cos^2 t) \vec{k}$$

$$= -\sin t \vec{i} + \cos t \vec{j} + 3 \vec{k}$$

Example 5: Show that for

uniform motion on a circle of

radius r , the curvature $K = \frac{1}{r}$

Soln

$$\vec{r}(t) = (\overbrace{x_0, y_0}^{\vec{r}(t)}) + r(\cos t, \sin t)$$

$$\vec{v}(t) = r(-\sin t, \cos t), \quad v = r$$

$$\vec{a}(t) = r \underbrace{(-\cos t, -\sin t)}_{\vec{n}}$$

$$a_n = \vec{a} \cdot \vec{n} = r$$

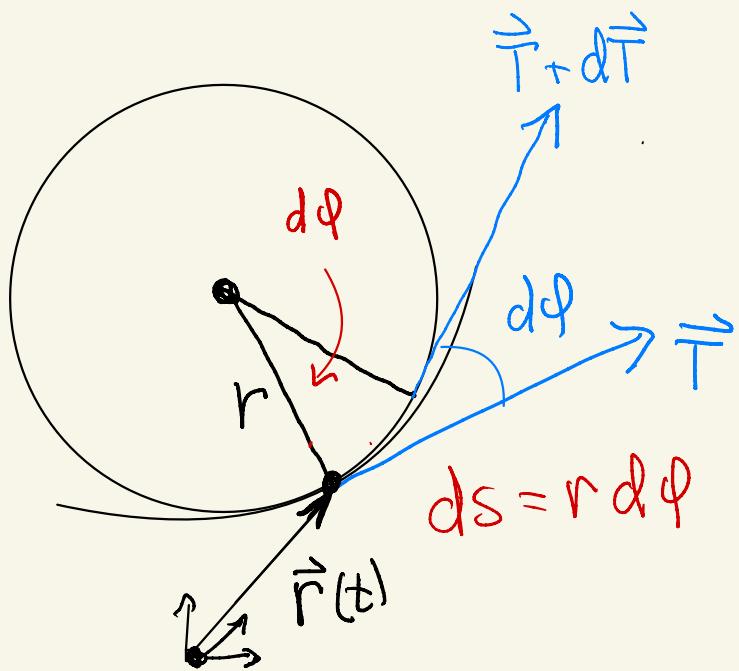
\vec{n}

In general: $a_n = K v^2 = K r^2$

Thus $r = K r^2 \Rightarrow K = \frac{1}{r}$ ✓

Q: Why is $\left\| \frac{d\vec{T}}{ds} \right\| = K = \frac{1}{r}$ in general?

Soh: Restrict to osculating plane -



Then a small

motion away from $\vec{r}(t)$ gives

$$ds = r d\phi$$

$$\vec{T} = \cos\phi \hat{i} + \sin\phi \hat{j}$$

$$\left\| \frac{d\vec{T}}{ds} \right\| = \left\| \frac{d\vec{T}}{d\phi} \right\| \underbrace{\frac{d\phi}{ds}}_{\text{unit}} \frac{1}{r}$$

$$\left\| \frac{d\vec{T}}{d\phi} \right\| = \left| \frac{d\vec{T}}{d\phi} \right| = \frac{1}{r}$$

$K = \frac{1}{r}$

General Theory of Curves:

16

$$\hat{T} = \frac{\hat{V}}{\|\hat{V}\|}, \quad \hat{N} = \frac{dT/ds}{\|dT/ds\|} = \frac{1}{k} \frac{dT}{ds}$$

Define Binormal $\hat{B} = \hat{T} \times \hat{N}$

Get:

$$\frac{dT}{ds} = k \hat{N}$$

$$\frac{d\hat{N}}{ds} = -k \hat{T} + \tau \hat{B}$$

$$\frac{d\hat{B}}{ds} = -\tau \hat{N}$$

$k = k(s)$ = curvature

$\tau = \tau(s)$ = torsion

Matrix Form - Equations for $(\hat{T}(s), \hat{N}(s), \hat{B}(s))$

Frenet-Serret Equations
F - 1847
S - 1851

$$\begin{pmatrix} \hat{T} \\ \hat{N} \\ \hat{B} \end{pmatrix}'(s) = \begin{bmatrix} 0 & k & 0 \\ -k & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{pmatrix} \hat{T} \\ \hat{N} \\ \hat{B} \end{pmatrix}$$

anti-symmetric

Theorem: Everything about \hat{C} is determined by curvature $k(s)$ & torsion $\tau(s)$